New paradigm for crown preparation: Great White Ultra carbide instruments

By George Freedman DDS, FAACD, FACP

Practitioners use both visual and tactile clues to determine tissues to be removed. Darker dentin is assumed to be affected by caries; it should be removed (unless, of course, it is re-hardened secondary dentin). Lightly colored dentin and enamel are presumed to be healthy tissues. For the dentist to observe color differences during preparation, the bur’s rotation should remove debris as quickly and effectively as possible (Fig. 2).

The earliest dental burs were manufactured from a variety of metals that were harder than natural tooth structure. With time, steel became the preferred bur metal. Developments in particle-to-metal adhesion technology resulted in the first diamond burs. These burs were preferable for high-speed tooth preparation to steel.

The subsequent introduction of carbide cutting instruments was a leap forward for dentistry; carbide offered more effective tooth preparation with less surface striation than diamonds. More recently, crosscuts and innovative attack angles were introduced to the carbide cutting shank to make preparation better, faster and easier (Figs. 3a, b).

In the past, dentists have tended to favor diamond burs for extra-coronal tooth preparation while carbide burs have been used largely for intracoronal cutting. The relative popularity of carbide and diamond burs varies considerably in various parts of the globe, largely due to local availability, cost and education.

One factor that is often not considered by the clinician in that diamond burs are used, their cutting efficiency tends to decrease dramatically. Their cutting diamonds tend to wear down and debris accumulates in the bur cavities (Fig. 4), reducing efficiency. In order to compensate, dentists tend to press harder on the tooth with the bur in order to maintain the earlier cutting efficiency. Inadvertently, this actually decreases the efficiency of the procedure and increases the potential for heat formation.

Diamond burs tend to grind tooth structures while carbide burs cut these same materials. This leads to the conclusion that crown and bridge preparation, where rapid and effective gross tooth reduction is required and desirable, is best accomplished with carbide instruments.

Recent research has indicated that when a crown or onlay restoration is to be bonded to the tooth surface, carbide bur preparation can improve the bond to the dentin.2 A more effectively bonded crown increases the longevity of the restoration by decreasing leakage and thereby the possible adhesive failure of the restoration. Carbide burs typically generate a smoother surface and the partially visible smear layer.11 This smear layer may be more easily dissolved and incorporated by self-etching primers, thus providing a stronger hybrid layer. This results in higher bond strengths.12 Cross-cut carbide burs improve the retention of crowns cemented with zinc phosphate by approximately 50 percent. Thus, the use of finishing burs on axial walls is discouraged.13

Current concepts of conservative dentistry dictate that a minimum of healthy tooth structure be removed during the preparation prior to the restorative process. Natural enamel and dentin are very likely the best dental materials in existence. Tooth structure conservation is thus inherent a desirable dental objective. Consequently, minimally invasive procedures that allow a greater part of the healthy tooth structure to be preserved are preferable (Fig. 5).14 The patient also benefits greatly from minimally invasive dentistry. There is typically less discomfort during treatment, and a greater likelihood that the repaired tooth will last a lifetime.

The dental profession tends to take new developments in general practice and equipment seriously. Some burs are designed for single use. They can be sterilized and reused, but often exhibit a significantly decreased cutting efficiency. Other burs are designed to be sterilized and re-used.

Recent research at the University of Rochester, Eastman Dental Center, jointly undertaken by the prosthodontic and the mechanical-engineering departments, examined the efficiency of various dental burs with respect to cutting rate and load needed to complete standardized preparations in Macor samples. Both air-driven and electric handpieces were tested.

The cutting rate represents the speed at which the bur (reflecting its material composition and design) cuts through a standardized material. The faster the speed, the more efficient the preparation. The load measures the operator pressure needed to cut effectively. A higher required load will cause more operator fatigue at the end of a long working day.

In the air-driven high-speed handpiece, the SS White Great White Ultra (SS White Burs, Lakewood, N.J.) had...
because it does not “grab” or “catch” the substrate, and thus does not stall in harder materials. The novel design creates less stress on the remaining tooth structure and less frictional heat that may irritate the pulp and damage the supporting periodontal structures.

The aggressive cutting angle (Fig. 15) of the Great White Ultra allows the operator to use less pressure on the tooth during preparation (resulting in decreased tooth heating and dentist fatigue). The tightly controlled parameters of manufacturing quality control develop a high degree of concentricity in the Ultra burs that offers less vibration and chatter during use, and decreased maintenance costs for handpieces (Fig. 14).

The goals of conservative tooth preparation include: 1) Re-contouring the remaining tooth and restored structures to a specified shape and size to accommodate a crown. 2) Providing a depth guide on all surfaces, including the occlusal, to allow the crown to have sufficient bulk and strength to withstand occlusal and other intrinomic forces. 3) Completing the preparation process with a single pass by one bur. 4) Creating the intended marginal finish, whether shoulder or chamfer, at the same time as accomplishing the gross preparation of the other surfaces. 5) Developing a surface that is suitable for bonding the indirect restoration. 6) Remaining conservative of tooth structure.

Preparing the tooth quickly and efficiently for both patient and dentist comfort.

For most dentists, the cutting speed tops the list of features that are important in selecting dental burs. Carbide manufacturers have produced a variety of designs and shapes that are intended to reduce the time that it takes a practitioner to prepare the tooth for a crown.

The Great White Ultra bur cuts quickly and smoothly through enamel. It negotiates amalgam and other restorative materials with minimal clogging and no drag or stalling in these harder materials. The bulk reduction in the crown preparation phase can be accomplished with a single instrument (Fig. 15).

The highly dentated body of the Great White Ultra cuts efficiently and quickly, and combined with the smooth tip, helps to provide two reduction actions in one single pass with a single bur (Fig. 16). The rounded, non-crosscut tip provides smooth, precise and controlled margins with the same cutting motions as the gross reduction preparation. Thus, the Great White Ultra is more efficient; there is less chair time.

There are two preferred marginal anatomies for crown preparation, the chamfer and the shoulder. Accordingly, two margin-specific clinical series of burs have been crafted. The Great White Ultra 856 Series develops a rounded axial-gingival margin providing a chamfer finish for the preparation (Fig. 17). The Great White Ultra 847 Series creates a 90 degree axial-gingival wall and provides a shoulder margin for crown restoration (Fig. 18).

The Great White Ultras are available in a variety of diameters and cutting lengths.

The Great White Ultra bur kits organize a variety of shapes and sizes that are typically used in routine crown preparation. The bonus is that once the correct bur is selected, the entire preparation can often be completed without changing to another instrument. Bulk reduction AND a smooth margin are created with the same reduction instrument.

Clinical case No. 1

The preparation of the buccal crown is very rapid and straightforward. A single pass of the Great White Ultra bur reduces the bulk of the tooth at the height of curvature and finishes the chamfer margin simultaneously (Fig. 19). The inter-proximal preparation must be accomplished without mar- ring the surface of the adjacent tooth. One of the thinner GWH burs may be used (Fig. 20).

The buccal surface is not smoothed out with a disc or diamond; the stri- ations created by the bur increase the surface area available for adhe- sion (Fig. 21). The occlusal reduc- tion is completed to provide 1.5-2.0 mm clearance for the crown (Fig. 22). The completed preparation, ready for impressions, is viewed from the occlusal (Fig. 23). The entire circumferen- tial preparation was completed with a single Great White Ultra bur in a single pass.

Clinical case No. 2

The molar crown preparation is begun on the buccal surface (Fig. 24) and continued circumferentially as in the case above. The bulk and margin- al preparations are completed at the same time. The completed prepara- tion, ready for impressions, is viewed from the occlusal (Fig. 25).

The stone model is verified against the intra-oral preparation, and the crown is tried on extra-oral (Fig. 26). If the fit on the model is correct, then the crown is tried intra-orally and cemented on to the prepared abutment (Fig. 27).
A circumferential preparation that has even depth throughout and adequate space for the restoration, as well as a well-defined margin (whether chamfer or shoulder), results in a well-fitting and long-lasting crown.

Clinical case No. 3

Some practitioners prefer to use depth grooves to guide crown preparation. The Great White Ultra bur is well suited to this task. The depth grooves are placed quickly and evenly to the desired preparation depth (Figs. 28a-d) at the same time that the location of the margin is determined.

The depth grooves are joined, maintaining the selected depth of the preparation and the location of the restorative margin (Fig. 29a, b). The occlusal surface is reduced to an ideal depth and shape (Figs. 29a-c) and the preparation, completed within a matter of minutes, is viewed from the occlusal (Fig. 29d).

It is reasonable to expect that Great White Ultra burs can be used for multiple tooth preparations, and that they can be cleansed effectively between patients. There are two important steps to follow for the proper sterilization of multiple-use tungsten carbide burs.

Step 1: Burs should be cycled through an automated washer such as the Hydrim (SciCan, Toronto, Canada), that provides rapid and effective washing, rinsing and drying with a single push of a button.

(The instruments may be cleaned manually, but they should be pre-soaked to loosen debris and handled with extreme care to avoid skin punctures. Avoid cold sterilizing solutions that contain oxidizing agents that can weaken carbide burs. Ultrasonic systems can be used as well. The re-use of solutions in these systems is less than ideal, however.

Separate the burs from each other in a bur block during ultrasonic immersion to prevent damage to the cutting surfaces. Brush any remaining debris away with a stainless steel wire brush. Rinse and dry the burs.)

Step 2: It is only at this point that sterilization can be initiated. The importance of this step cannot be overstated. Only the effective sterilization of burs eliminates the threat of cross contamination to patients and staff.

Steam autoclaves will effectively sterilize carbide burs, but some units may or dulling carbide burs.

Metal bur blocks may promote galvanic corrosion and should be avoided. Both dry heat sterilizers and chemical canes can be used without corroding or dulling carbide burs.

Conclusion

Great White Ultra burs are an innovative solution for the crown and bridge tooth preparation process. The differential reduction provided by the varied cross cutting of the bur's active surface allows introral multitasking.

Great White Ultras simplify the clinical procedure by reducing the circumferential bulk of the tooth and preparing the final margin at the same time. Rapid cutting, less structural stress and a more adhesive surface are additional advantages.

References

MEDIA CME Self-Instruction Program

Dental Tribune Middle East & Africa in collaboration with CAPP introduces to the market the new project mCME - Self Instruction Program. mCME gives you the opportunity to have a quick and easy way to meet your continuing education needs.

mCME offers you the flexibility to work at your own pace through the material from any location at any time. The content is international, drawn from the upper echelon of dental medicine, but also presents a regional outlook in terms of perspective and subject matter.

How can professionals enroll?

They can either sign up for a one-year (10 exercises) by subscription for the magazine for one year ($65) or pay ($20) per article. After the payment, participants will receive their membership number and will be able to attend to the program.

How to earn CME credits?

Once the reader attends the distance-learning program, he/she can earn credits in three easy steps.

1. Read the articles.
2. Take the exercises.
3. Fill in the Questionnaire and submit the answers by Fax (+971 4 5696885) or Email info@cppmea.com. After submission of the answers, (name and membership number must be included for processing) they will receive the Certificate with unique ID Number within 48 to 72 hours.

Articles and Questionnaires will be available in the website after the publication. www.cppmea.com